
MATHEMATICS OF COMPUTATION 
VOLUME 60, NUMBER 202 
APRIL 1993, PAGES 651-668 

A PARALLEL ALGORITHM FOR COMPUTING 
THE EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX 

PAUL N. SWARZTRAUBER 

ABSTRACT. A parallel algorithm, called polysection, is presented for computing 
the eigenvalues of a symmetric tridiagonal matrix. The method is based on a 
quadratic recurrence in which the characteristic polynomial is constructed on 
a binary tree from polynomials whose degree doubles at each level. Intervals 
that contain exactly one zero are determined by the zeros of polynomials at the 
previous level which ensures that different processors compute different zeros. 
The signs of the polynomials at the interval endpoints are determined a priori 
and used to guarantee that all zeros are found. The use of finite-precision 
arithmetic may result in multiple zeros; however, in this case, the intervals 
coalesce and their number determines exactly the multiplicity of the zero. For 
an N x N matrix the eigenvalues can be determined in 0(log2 N) time with N2 
processors and O(N) time with N processors. The method is compared with 
a parallel variant of bisection that requires O(N2) time on a single processor, 
O(N) time with N processors, and 0(log N) time with N2 processors. 

1. INTRODUCTION 

A parallel algorithm, called polysection, is presented for computing the eigen- 
values of a symmetric tridiagonal matrix 

b1 cl c l b2C2 
C1 b2 C2 

(1.1) A=.. 

CN-1 

CN-1 bN y 

If ci = 0 for some i, the problem can be reduced to two independent eigen- 
problems and hence it is customary to assume that the off-diagonal elements are 
nonzero. In theory this also separates the eigenvalues but in practice, with finite- 
precision arithmetic, "multiple" eigenvalues are not uncommon. The method 
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presented here is particularly effective in locating multiple eigenvalues. We be- 
gin with a brief review of existing methods. 

The QR algorithm has been the method of choice for computing the eigen- 
values of a matrix on a single processor. However, the choice is less clear in 
the context of parallel computing. Nevertheless, there is a noteworthy paper 
by Sameh and Kuch [13] which describes a parallel implementation of the QR 
algorithm for symmetric tridiagonal matrices. This paper, as well as the paper 
by Stone [17], for the parallel solution of symmetric tridiagonal systems, con- 
tains parallel algorithms for solving two- and three-term recurrence relations 
that provide key computational tools for much of the subsequent work in this 
area. More recently, Cuppen [3] developed a method based on the splitting 

(1.2) A= [i T2] [CT 

where T1 and T2 are symmetric tridiagonal matrices and C has one nonzero 
element in its lower left-hand corner. The eigenvalues of T1 and T2 can be 
computed in parallel, followed by an update procedure in which the eigenvalues 
of A are computed from the eigenvalues of T1 and T2. This approach can 
be applied recursively by splitting T1 and T2 and so forth until matrices of 
order one are obtained. The parallelism is now evident in the recursive pro- 
cess of computing the eigenvalues of successively larger matrices from those 
of smaller matrices. This approach has been analyzed extensively by Dongarra 
and Sorensen [6] as well as Sorensen and Tang [16], who solved many of the 
practical problems that arise in its implementation and demonstrated that ze- 
rofinding provides a viable technique for computing eigenvalues. In particular, 
they used deflation to improve reliability and performance [2]. 

Eigenvalues have also been computed as the zeros of the characteristic poly- 
nomial of A. Sturm sequences are fundamental to the method of bisection, 
which provides a straightforward method for computing eigenvalues. Bisec- 
tion is based on the theorem that states that the number of sign changes in the 
Sturm sequence is equal to the number of eigenvalues that are less than the 
current estimate. As early as 1962, Wilkinson [20] stated that "the theorem 
[bisection] can be used to locate an individual eigenvalue without locating any 
of the others." Although he was not concerned with parallel computing at that 
time, his observation forms the basis of a parallel algorithm. The pth processor 
uses interval bisection to find the largest value such that the Sturm sequence 
has p agreements in sign; i.e., the pth processor determines the pth eigenvalue 
independent of the other processors. With N processors all eigenvalues can 
be computed in O(N) time. This result is valid even if one uses the highly 
sequential three-term recurrence relation for computing the Sturm sequence. 
The accuracy of bisection is known to be high [4, 9] and superior to the QR 
algorithm. 

A variant of bisection, called multisectioning, was recently developed and 
analyzed in [12]. Sturm sequences are developed on multiple subintervals to 
isolate the eigenvalues. The eigenvalues are then determined by bisection or 
Newton's method or the zero-in method that combines bisection and the secant 
method. Multisectioning is particularly appropriate if only a few eigenvalues 
and/or eigenvectors are of interest. Ipsen and Jessup [8] have made a detailed 
comparison of Cuppen's method, and multisectioning on the hypercube. 
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In this paper we introduce a method, called polysection, which is based on the 
parallel algorithm developed in [ 17, 19] for computing the characteristic polyno- 
mial. Krishnakumar and Morf [10] also use this parallel algorithm to compute 
the eigenvalues of a symmetric tridiagonal matrix in O(N log N) time; how- 
ever, their method of separating the zeros is different from the one presented 
here. The characteristic polynomial is evaluated on a binary tree structure using 
a quadratic recurrence in which the degree of the polynomials doubles at each 
step. We show that the zeros of the polynomials at any step in the quadratic 
recurrence are separated by the zeros of the polynomials at the previous step. 
Hence, the zeros can be determined by recursion, beginning with the single zeros 
of linear polynomials and ending with the zeros of the characteristic polynomial. 
Each processor is given an interval that contains a unique zero, which ensures 
that different processors compute different zeros. In the presence of multiple or 
near multiple zeros, the intervals tend to coalesce and their number determines 
the multiplicity of the zero. This eliminates the traditional problems experi- 
enced by some methods for computing multiple zeros. Computational results 
are presented in ?7 for a large symmetric matrix which, to machine precision, 
has many eigenvalues with a multiplicity of two. 

For large N and/or IhAIl , the possibility of over/underflow exists when com- 
puting the characteristic polynomial. Usually, this can be handled by an a priori 
scaling of A; however, dynamic parallel scaling [ 17, 19] provides a more reliable 
approach in which catastrophic over/underflow is eliminated, since intermedi- 
ate computations are maintained at 0(1). This approach is reviewed in ?6. 
Over/underflow can also be avoided by reformulating the problem in terms of 
self-scaling rational functions. This approach together with the polynomial im- 
plementation are presented in ?5 and their accuracy is compared with the QR 
and bisection algorithms in ?7. 

In ?7, the accuracy of polysection is compared with a variant of bisection in 
which the Sturm sequence is computed using the parallel algorithm developed 
in [17, 19]. With this approach all eigenvalues can be computed in 0(logN) 
time with N2 processors. The numerical results in ?7 show that the parallel 
algorithm for the Sturm sequence provides a highly accurate algorithm for the 
eigenvalues. The accuracy of both bisection and polysection is shown to be 
superior to the QR algorithm, particularly for the case of near multiple zeros. 
Bisection with the parallel computation of the Sturm sequence is discussed in 
?6. This straightforward variant will be called parallel bisection, and although it 
has not appeared in the literature it is known to the computational community 
(see acknowledgments). 

The asymptotic time for bisection is less than polysection, and the two meth- 
ods have comparable accuracy. These results, combined with the simplicity of 
bisection, make it reasonable to question the relevance of polysection. However, 
polysection has three attributes that are not necessarily shared with bisection. 
First, the theory of polysection developed in ??3-5 guarantees its reliability in 
the sense that N zeros will always be found. Although this attribute is shared 
with the serial bisection algorithm [21, pp. 304-305], it remains to be demon- 
strated for parallel bisection. Second, "deflation" can be used with polysection, 
which can substantially reduce the amount of computation. An example is 
given in ?7 of a matrix with order 4096 whose eigenvalues were determined 
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from polynomials with degree less than 15. Third, Newton's or other high- 
order methods can be used with polysection to speed zerofinding. The most 
appropriate method may likely depend on the particular application. 

2. A PARALLEL ALGORITHM FOR EVALUATING 

THE CHARACTERISTIC POLYNOMIAL 

In this section we will review the parallel algorithm given in [17, 19] for 
computing the characteristic polynomial of A. It is computed in terms of 
characteristic polynomials di, j of principal submatrices consisting of rows (and 
columns) i through j. Expanding about the jth row, we obtain the well-known 
three-term recurrence relation 

(2.1) di, j = (bj - A)di, j- I -21 di 

If we define the sequence 

(2.2) eij = cjdi,j-, 

we obtain the two-term matrix recurrence 

(2.3) [~~e,j] _ei,j-l _ -Cj_l 0] 
To solve this recurrence relation, we define 

(2.4) Qi,j = 
[-Ck-X ?]- 

Next we show that (2.4) has the closed form 

(2.5) Qj= [ 1 
(2.5) QlXj= ['-ci-ldi+,,j -ci-lcjdl+,,j-l] 

with elements that can be determined from the characteristic polynomials of 
four submatrices. The desired characteristic polynomial dl ,N is given as the 
upper left element of Q1, N. The proof of (2.5) is by induction on j . Equation 
(2.5) can be verified by direct computation for j = i + 1 . If we define di+1, i = 
di,_ jI= 1 and di+ 1, _ = 0, then equation (2.5) is also true for j = i. Now 
assume that it is true for j - 1; then 

(2.6) Qij di, j_l 11- 1 d, j-2- [j- 0] 

After matrix multiplication, (2.1) can be used with (2.6) to verify (2.5), which 
completes the proof. 

The associative property of matrix multiplication provides a splitting formula 
that is fundamental to the parallel algorithm. For any i < k < j, 

(2.7) Qij = Qi,kQk+l,j. 

Consider now the parallel algorithm for computing Q ,N for the case N = 8. 
Step 1. For i = 1, 2, 3, and 4 compute 

(2.8) Q2i1 2i=- [b2i -A C2i] [b2i - 
A 

C2i] 
-C2i-2 0 J -C2i. I j 
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Step 2. Compute 

(2.9) Q1,4 = Q1,2Q3,4 and Q5,8 = Q5,6Q7,8s 

Step 3. Compute 

(2.10) Q1,8 = Ql,4Q5,8- 

The computations within each step can be performed simultaneously. For 
general N, the first step requires 5 multiplications and 3 additions per matrix 
multiplication for a total of 4N flops. The rth step requires 12N/2r flops 
for r = 2, ... , 1og2 N, which totals about 6N flops. Therefore, on a single 
processor, the computation of the characteristic polynomial totals about 1ON 
flops. With N processors the first step requires 4 flops (since 2 processors are 
available for each matrix multiply), 3 flops are required for the second step 
and 2 flops are required for each step thereafter. A minimum of two flops are 
required since the additions must follow the multiplications. Hence, a total of 
2 lg2 N + 3 flops are required to compute the characteristic polynomial using 
N processors. 

In the sections that follow we will use the elementwise form of (2.7), which 
is obtained by substituting (2.5) into (2.7): 

(2.1 la) di,j = di,kdk+l,j - c2di,k-ldk+2,j, 

(2.1 lb) di,j-1 = di,kdk+ ,j-1 - c2di,kldk+2,j-, 

(2.1 Ilc) di+l,,j = di+l ,kdk+l,j y-ck2di+l ,k-ldk+2, j, 
(2.1lId) di+1,,j-l = di+,,kdk+l,j1 _-C 2di+ 1, k- Idk+2, j-I 
Equations (2.1 1b) through (2.1 1d) are the same as (2.1 1a) but with a suitable 
shift in the subscripts i and j . Nevertheless, all four equations are required to 
"close" or complete the recurrence relations. The parallel algorithm developed 
in this section can be used to solve a general tridiagonal system of equations 
[19], although equations (2.1 1) were first developed in block form for solving 
separable elliptic partial differential equations [ 1 8]. Although equations (2. 1 1 a- 
d) are valid for any i < k < j, the parallel algorithm presented in ?4 uses 
k=(i+j- 1)/2. 

3. THE SEPARATION THEOREM 

In this section we will show that if Al are the collated zeros of the four 
characteristic polynomials on the right side of equation (2. 1 la), then the zeros of 
dij occur one per interval in every other interval (A21, A21+1). This result also 
holds for (2.1 1b) through (2.1 1d) but it will only be demonstrated for (2.1 1a) 
since the proofs are almost identical. The separation theorem is fundamental to 
the parallel algorithm and ensures that each processor will find a different zero 
and that all zeros will be found. To prove the theorem and develop the precise 
nature of the separation, we will need the following four lemmas. 

Lemma 1. Let p(A) = PO + *** + Pk Ak and q(A) = qo + *** + qk-IAk-I be poly- 
nomials with real and strictly interlacing zeros. If Pk and qk-I have the same 
sign, then r(A) = p(A)/q(A) is monotone increasing on any interval that does 
not contain a zero of q(A). If they have the opposite sign, then r(A) is mono- 
tone decreasing. More specifically, if Pk/qk-I > 0 then r'(A) > Pk/qk- , or if 
Pk/qk-1 < 0, then r'(i) < Pk/qk-1 . 
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Proof. The partial fraction expansion of r(A) is 

(3.3) r(A) = Pk _A+ P-lqk-I Pkqk-2 W+ 
qk-i 1=1k- 

where Al are the zeros of q(A) and w, = p(Al )/q'(Al) . Therefore, 

(3.4) r'(A) = Pk _-0 

If Pk and qk-1 are both greater than zero, then sign[p(Al)] = sign(- 1)1-k and 
sign[q'(Al)] = sign(- 1)1-k+l and hence w, < 0. This result together with (3.4) 
implies the desired result r'(A) > Pk/qk- 1 . A similar proof for negative Pk and 
qk-1 yields the same result, and for Pk and qk-1 with opposite sign we obtain 
r' (i) < Pk lqk- I D E 

Lemma 2. Let R(A) = ri()r2(A)-c2, where r1() = p(l))/q(1)(A) and r2() = 

p(2)(A)/q(2)(A) are like r(A) in Lemma 1 and c : 0 is an arbitrary real constant. 
Let Al be the collated zeros of p(l)(A), q(l)(), p(2)(A), and q(2)(A). From 
Lemma 1, the sign of r (A) is the same on all intervals (Al-, 5l). We will 
assume that r2(A) has the same sign as r'(A). Define 

(3.5) d (A) = q(1)(A)q(2)(A)R(A) = p(l)()p(2)(A) _ C2q(1)(A)q(2)(A) 

Then d (A) does not have more than one zero in any interval (Al, Al+,). 
Proof. By hypothesis, r'(A) and r2(A) have the same sign. If R(a) is zero, 
then r1 (a) and r2 (a) must have the same sign and hence they have the same 
sign on the entire interval (Al-1, l)). Therefore, R'(A) = r (A)r2(A) + r1 (A)r2)() 
does not change sign on (l-l, 5)l), which implies that R(A) is monotone and 
hence a is a unique zero. Since q(1)(A)q(2)(A) : 0, a must also be a unique 
zero of d (A). 5 

Lemma 3. Let Al and d(A) be defined as in Lemma 2. If d(a) = 0, where a 
is in the open interval (Al-, 5l), then both d(Al-1) :$ 0 and d(Al) :$ 0; i.e., 
neither of the interval endpoints are zeros of d(A). 
Proof. The product q(l)(A)q(2)(A) : 0 on (Al-, ) A); hence from (3.5), R(a)= 
0. But from the proof of Lemma 2, R(A) is monotone and therefore nonzero 
at the endpoints 21-I and Al. If d (Al) = 0, then from (3.5) either q(l)Al) = 0 
or q(2)(Al) = 0. But then (3.5) also implies either p(l)(Al) = 0 or p(2)(Al) = 0. 
However, since the zeros of the q-polynomials strictly interlace with those of 
the p-polynomials, the only possibilities are either p(ll) = - q(2) (Al) = 0 or 
p(2)(Al) = q(l)(Al) = 0. Without loss of generality we can assume the former, 
which implies that lim, ,x, r( A) = 0 and lim,I,x, 1r2 () I = oc . However, this 
contradicts the hypothesis that r' (A) and r2 () have the same sign and the result 
that r1(A) and r2(A) also have the same sign as demonstrated in the proof of 
Lemma 2. Hence, we obtain the desired result; namely, that d(Al) :$ 0. A 
similar proof yields d(Al-1) :$ 0. El 

Lemma 4. Let Al and d(A) be defined as in Lemma 2. Then d(A) has at most 
one zero in any two adjacent intervals (l-l, Al), (Al, A+1) 

Proof. If neither interval has zero length, then only one of the polynomials 
p(1)(A), p(2)(A), q(1)(A), q(2)(A) changes sign at Al. Therefore, p(l)(A)p(2)(A) 
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and q(l)(A)q(2)(A) must have opposite signs on one of the intervals, which by 
(3.5) implies that d(A) does not have a zero in that interval. If d(i) has a zero 
on the other interval, then by Lemma 2 it must be unique. 

At least one of the intervals must have nonzero length, for otherwise some Al 
would have multiplicity greater than two, which contradicts the strict interlacing 
of the zeros of q(l)(A) with those of p(1)(A) and the zeros of q(2)(A) with those 
of p(2) (A). If the interval with nonzero length contains a zero, then, by Lemma 
3, the interval with zero length does not contain a zero. This argument also 
implies that if the zero length interval contains a zero of dQ(A) then the interval 
with nonzero length does not contain a zero of d (A). Note that an open interval 
with zero length is replaced by a closed interval consisting of a single point. LI 

The separation theorem. Let Al for 1 = 1, ... , 2(j - i) be the ordered zeros 
of the characteristic polynomials di, k, dk+, j, di, k-1, and dk+2,j augmented 
with AO and A2(j-i)+1 as the lower and upper bounds, respectively, on the zeros 
of di, . If the off-diagonal elements of A are nonzero, then the characteristic 
polynomial di,j defined in (2.11 a) has j - i + 1 zeros located one per every 
other interval in (A21, )2l+1) for 1 = 0, ..., j- i. 
Proof. Set d(A) = di,j, p(l)(A) = di,k, q(l)(A) = di,k-1, p(2)(A) = dk+1,j 
q(2)(A) = dk+2,i, and c = Ck; then (2.1 1a) takes the form of (3.5). Before 
Lemmas 1 through 4 can be applied to (3.5) we have to establish the validity 
of two assumptions. First, Lemma 1 requires strict interlacing and second, 
Lemma 2 requires r'(A) and r2 () to have the same sign. But strict interlacing 
of zeros is a well-known property of any sequence of polynomials that satisfy the 
three-term recurrence (2.1) with nonzero off-diagonal elements ci. Therefore, 
it remains only to show that r'(A) and r2 () have the same sign. 

As in Lemma 2, define rl(L) = p(0)(A)/q(1)(A) and r2(A) = p(2)(-)lq(2)(A). 
From the three-term recurrence (2.1) it can be determined that the high-order 
term p(l)(,() = di,k is (_I)k-i+lk-i+l, hence the highest-order coefficient is 

Pk -i+l 
( 

i)ki+l . Similarly, qk_)i = ( i)ki, }-k = (-)1k 
, and q()k-1 = 

(-i)j-k-1 . Therefore, sign[pj1). 1/q ,)] = sign[p(2)k/q(2) = sign(-1). By 
Lemma 1 this implies that r (A) and r2(A) have the same sign on all intervals 
(Al-,, Al). This completes the validation of the assumptions in the lemmas, 
which can now be applied to (3.5) and hence to (2.1 la). 

By Lemma 4, di,j = d(A) does not have more than a single zero in any 
two adjacent intervals, including the case in which the length of one interval is 
zero. But from the fundamental theorem of algebra, di, j must have j - i + 1 
zeros on all 2(j - i) + 1 intervals. However, the only possible distribution 
of these zeros, subject to the restriction of Lemma 4, is one zero per every 
other interval, beginning with the first interval (AO, Al) and ending with the 
last interval (A2(j-i), A2(j-i)+) . This completes the proof of the separation 
theorem. El 

4. THE POLYSECTION ALGORITHM AND ITS COMPLEXITY 

An overview of the computations are presented in this section together with 
operation counts and a brief discussion of the communication complexity. 

Definition 1. Let Al(i: j) for 1 = 1, ..., j - i + 1 be the zeros of the charac- 
teristic polynomial d,j- 
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Definition 2. Let Al(i: j) for 1 = 1, .. . , 2(j- i) be the collated zeros of di,k, 
dk+l,j, di,k-l, and dk+2,j, where k = (i + j- 1)/2. Also let Ao(i: j) = AO 
and A2(j-i)+l (i: j) = A2(j-i)+I be the lower and upper bounds, respectively, on 
the zeros of di, j. The bounds for di, j can be determined from Gershgorin's 
theorem. The bounds for di+ ,j and dij-, j can be determined from the zeros 
of dij,, and the bounds for di+i,j-l can be determined from the zeros of 
either di+,,j or dij-1. 

For exposition it will be assumed that N = 2s for some integer s. This 
requirement simplifies the presentation but is not imposed by the algorithm, 
since k does not have to be exactly midway between i and j in equations 
(2.11). The parallel algorithm for computing the eigenvalues of a symmetric 
tridiagonal matrix is then given by: 
For r= 1, ..., s and 

for m =0, ..., 2s-r- 1 

set i = m2r + 1; j = (m + 1)2r and compute 

Al(i: i) E [A21-2(i: j),5 A21-1(i: j) for I 1, . ... , + 1,5 

Al (i i - 1 ) E [A21-2(i : j -1 ), A21-1 (i : i -1 )]for I = 1, . ... , j i 

Al(i + I1: j) E [A21-2(i + 1: j),5 A21-1 (i + 1: A) for I = 1,5 ... ., j - i 

Al(i+ 1:1-1) E [A21-2(i+ 1:j - 1), A21-1(i+ 1:1 - 1)] 
for I = 1, ..., j- i- 1. 

The four sets of eigenvalues belong to the four characteristic polynomials 
listed on the left side of equations (2.11 a-d). The eigenvalues of A are com- 
puted in the first of the four steps listed above when r = s, and hence the 
remaining three sets do not have to be computed. The amount of computation 
doubles when r increases by one until r = s, when it is halved. Therefore, the 
amount of computation for the intervals that contain the eigenvalues of A is 
about four times the amount that would be required to compute the eigenvalues 
of A if the intervals were known. 

First we will determine the operation count for polysection on a single pro- 
cessor. For r = 1, ... ., 1g2 N - 1, a total of 4N zeros of polynomials with 
degree 2r must be computed. For r = 10g2 N only N zeros must be computed. 
From ?2, fewer than 10 * 2r operations are required to evaluate a polynomial 
with degree 2r. Therefore, the number of operations TF1 required to compute 
the eigenvalues of a symmetric tridiagonal matrix on a single processor, using 
the parallel algorithm for evaluating the polynomials, is bounded by 

log2 N-1 

(4.1) TFi < lOeN2 + 40neN E 2r < 5OeN2, 
r=1 

where ne is the maximum number of polynomial evaluations that are required 
to determine a zero. With N processors each zero can be determined on a 
separate processor for a bound of 

(4.2) TFN < 50neN. 

With N2 processors a characteristic polynomial with degree 2r can be com- 
puted with 2r + 3 flops, using the algorithm given in ?2. In addition, each 
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zero can be determined on a separate processor, and hence the total number of 
operations TFN2 is bounded by 

lg2 N 

(4.3) TFN2 < 4nfle (2r + 3) < 4ne log2 N. 
r=1 

Note that the four polynomials in (2.1 1) could be evaluated independently with 
additional processors for a minimum of ne log N flops. 

In the development of these bounds we have, in the traditional way, over- 
looked what could be a significant contribution to the total computing time, 
namely, the time required for communication. The collation of the zeros of 
the four characteristic polynomials in the separation theorem must also be per- 
formed in 0(log2N) time, or the overall algorithm cannot be considered to be 
0(log2 N). The collation of di,k, dk+,,j, di,k-1, and dk+2, j can be done in 
the following steps: 

1. The zeros of di, k and di k-1 interlace, and hence a shuffle can be used 
to combine them in an ordered sequence, say A( 

2. Similarly, the zeros of dk+1, j and dk+2, j can be shuffled to produce 
an ordered sequence, say 

3. Finally, the ordered sequences A(1) and i(2) can be merged to form the 
desired collated sequence. 

Two sequences can be shuffled in a time proportional to the logarithm of their 
length. Also, if two ordered sequences are juxtaposed, with the first increasing 
and the second decreasing, then the combined sequences form a single bitonic 
sequence that can also be ordered in a time proportional to the logarithm of its 
length. Hence, for a polynomial of degree 2r, each of the steps above can be 
performed with 0(r) parallel transmissions, and therefore the overall time for 
communication with N processors is proportional to 

lg2 N 

(4.4) Sr log2 N. 
r=O 

Therefore, the overall algorithm, including communication, is 0(log2 N) if the 
architecture of the multiprocessor supports the algorithmic requirements of the 
shuffle and merge. The hypercube and related interconnection topologies sup- 
port both the parallel computation and communication that are implicit in the 
algorithms presented here. 

5. IMPLEMENTATIONS OF POLYSECTION 

In this section we will develop both a polynomial and rational function imple- 
mentation of polysection. The polynomial implementation may require scaling 
to avoid over/underflow, but it is more accurate than the rational function im- 
plementation. The topic of over/underflow is important in the context of com- 
puting characteristic polynomials and is discussed further in ?6. Over/underflow 
can also be eliminated by reformulating the method in terms of rational func- 
tions, which is the reason for the second implementation given in this section. 

The sign of each polynomial at the interval endpoints can be determined a 
priori and used to eliminate the usual problems associated with finite-precision 
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arithmetic. This also provides both implementations with guaranteed reliabil- 
ity. The computation of near multiple zeros (or multiple zeros if ci = 0) is 
facilitated by multiple intervals with zero (or near zero length) that provide the 
correct multiplicity. The purpose of this section is to describe both implemen- 
tations and certain details that are required to ensure that all eigenvalues are 
found. 

A. Polynomial implementation. In this implementation the polynomials are 
computed using the parallel algorithm that was given in ?2. We do not discuss 
the zerofinding method itself other than to note that the method of interval 
bisection was used for the results presented in ?7. A considerable amount of 
literature is available on this topic and many options exist. 

The reliability of the algorithm is greatly enhanced by knowing the signs 
of the characteristic polynomials at the endpoints of the intervals. Because 
the eigenvalue enters the polynomial with a negative sign, i.e., as bi - A on the 
diagonal of A, the high-order term in di,j is (-1)j-i+1)j-i+l . But j-i+ 1 = 2r 
is an even integer, which combined with the separation theorem implies that the 
signs of di,j on Al(i: j) for 1=0, .. ., 2r+1 - 1 are + - - + + . . . + + - -+. 
Similarly, the signs of di,j1 on Al(i: j - 1) for = 0, ..., 2r+ - 3 are 
+--++.. .--++-. Thesignsof di+1,j on Al(i+l: j) for l = 0, ... , 2r+'-3 
are + - - + + - - + +- and the signs of di+l,j-l on Al(i + 1 j - 1) for 
1 = 0 , ... , 2r+1 - 5 are + - - + + + + - -+. 

In practice there are two reasons why these sign patterns may be interrupted. 
First, as previously noted, di,k and dk+2,j are characteristic polynomials of 
different submatrices and may therefore share a common zero that would also 
be a zero of di,j. Then, with finite precision, a small value could be obtained 
for di,j with the wrong sign. Second, although in theory the zeros of di,k 
and di,k-i (or dk+1,j and dk+2,j) interlace, with finite precision they may 
coalesce or cross and again produce a small number with the opposite sign. 
Both cases imply that a zero of the characteristic polynomial has already been 
found to machine precision, and it would therefore seem reasonable to select 
one or the other as a zero. However, endpoint zeros might belong to a different 
interval in the presence of near multiple or multiple zeros. The most satisfactory 
approach is to replace any endpoint value whose sign differs from the correct 
sign by the machine epsilon or any value with the correct sign. The bisection 
method or variants thereof can then be used to select the zero. This procedure 
is fundamental to the reliability of the algorithm and guarantees that N zeros 
will be found. Sign tests are attractive since they are machine-independent. 

In practice, some of the intervals usually shrink to zero as the computation 
proceeds. This is beneficial because it reduces the amount of computation that is 
required to compute the zeros. This "deflation" was also reported by Dongarra 
and Sorensen [6] who observed that it could make Cuppen's method competitive 
with the QR algorithm on a single processor. Deflation could be initiated with 
a machine-dependent test that detects very small intervals. However, a more 
satisfactory approach has been to detect interlace faults and set the zeros that 
have crossed to their average value. This produces zero-length intervals that are 
detectable without the use of a machine-dependent test. A common matrix, for 
which deflation does not occur, has elements bi = a and ci = 1, where a is 
arbitrary. 
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B. Rational function implementation. The eigenvalues of A can also be com- 
puted as the zeros of the rational function R(A) that was introduced in Lemma 
2, ?3, namely 

(5.1) R(?) = rl-()r2(i) _ C2 

where ri(A) = di,k/di,k1I and r2(A) = dk+l,j/dk+2,j. All polynomials are 
evaluated and stored in factored form in this implementation. 

There are three reasons to consider a second implementation of the algo- 
rithm. First, the rational function is self-scaling; second, one can take further 
advantage of deflation to reduce the order of the rational functions; and third, 
the operation count for the rational function implementation is somewhat less 
than the polynomial implementation. This must be weighed against a small 
loss of accuracy compared with the polynomial implementation. The loss is not 
substantial, since only two binary bits are lost when compared with the QR al- 
gorithm for a matrix with order 1024. The accuracy of the two implementations 
are compared experimentally in ?7. 

To provide the rational implementation with the same degree of reliability 
as the polynomial implementation, it is necessary to determine the behavior 
of R(A) at the interval endpoints a1, a2. If the interval contains a zero of 
(5.1), then r1 (A) and r2(A) must have the same sign. They also satisfy the 
conditions of Lemma 1, which implies that they are both monotone decreasing 
functions, since the ratio of the high-order coefficients is -1 . These conditions 
are satisfied only if d, k or dk+1,j are zero at one end of the interval and 
di,k-i or dk+2, j are zero at the other, which implies that only two cases are 
possible, namely the ones listed in steps 4 and 5 below. Consider now the steps 
that must be taken to guarantee that all of the zeros will be found. 

1. Like the polynomial implementation, any interlace faults are corrected 
by replacing the zeros that have crossed by their average value. 

2. Any zeros that are identically common to both the numerator and de- 
nominator of r1 (A)r2 (i) are removed and selected as zeros of di, j . This 
deflation can substantially reduce the amount of computation. A matrix 
with order N = 4096 is presented in ?7 for which the maximum order 
of any computed polynomial is 15! 

3. If al = a2, then aI is selected as a zero of di, j . This deflation step 
can be used with both implementations. 

4. If a, # a2 and either di,k or dk+1,j are zero at a1, then R(a1) is 
set to -c2 and R (a2) is set to a large positive number. 

5. If al # a2 and either di,k-1 or dk+2,j are zero at a, , then R(al) is 
set to a large positive number and R(a2) is set to -ck . 

Case 4 applies to the first interval and case 5 applies to the last interval but 
with minor modifications. Machine-independent tests can be used to determine 
which of the cases 1 through 5 apply. Once R(al) and R(a2) are determined 
from step 4 or step 5, the zeros can be determined using bisection or any variant 
thereof. Only the signs of R(cal) and R(ca2) are relevant if bisection is used. 
Other zerofinding methods can be used but they should probably be combined 
with bisection if reliability is to be maintained. 

Although scaling is not required for this implementation, the rational 
functions r1 (A) and r2 (A) should be computed as a product of quotients 
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(A - Ai)I(A - fli), where Ai and 3,i are chosen as close as possible. This pro- 
hibits the growth of intermediate computations that might result in numerical 
difficulties. 

6. PARALLEL BISECTION 

As early as 1962, Wilkinson [20] presented bisection as a method for comput- 
ing the eigenvalues of a symmetric tridiagonal matrix. In 1967, Barth, Martin, 
and Wilkinson [1] published an improved algorithm that was resistant to over- 
flow and made more efficient use of the Sturm sequences. Information obtained 
from the Sturm sequences for one zero was used to speed finding the other ze- 
ros. Evans et al. [7] also make efficient use of the Sturm sequences to speed 
the bisection process. Schreiber [14] uses bisection in defining systolic arrays 
for computing the eigenvalues. The accuracy of serial bisection is quite good, 
as determined by Kahan [9] in 1966. Recently, Demmel and Kahan [4] and 
Demmel and Gragg [5] provided additional results concerning the accuracy of 
singular values and eigenvalues. 

Both Kahan and Wilkinson recommended a variant of the three-term recur- 
rence (2.1), namely 
(6.1) qj = bj - c - _1qj-, 
where qj = di, /di, j-I. The purpose of this variant is to avoid over/underflow. 
The method of bisection is based on the following theorem: 

The number of agreements in the sign of consecutive characteristic polynomials 
d,j (A) of leading principal submatrices is equal to the number of eigenvalues 
strictly greater than iA. 

The Sturm sequence includes dl, o = 1. In [20], Wilkinson noted "The 
theorem may be used to locate an individual eigenvalue without locating any 
of the others" which forms the basis of an elegant parallel algorithm. The pth 
processor uses bisection to find the largest value of A such that dl,j(A) has 
p agreements in sign; i.e., the pth processor determines the pth eigenvalue 
independent of any other processor. 

With the use of the sequential recurrence relations (2.1) or (6.1) together with 
N processors, this approach requires O(N) time. On a single processor O(N2) 
time is required. In this paper we will use a parallel algorithm for computing 
the Sturm sequence d1 j(). The algorithm will be reviewed only briefly here 
since the details can be found in [19]. It is a variant of a similar algorithm 
given in [13]. Both Sturm sequence calculations require the computation of the 
partial products of a sequence of two-by-two matrices. The parallel algorithm 
used for these partial products has been generalized to any associative operator 
in [11], where it is called the parallel prefix computation. 

In ?2 we reviewed the parallel algorithm for computing the characteristic 
polynomial of A, namely dl, N (A). As a by-product of this computation certain 
other elements of the Sturm sequence were computed, namely dl 2'(i). The 
remaining elements in the Sturm sequence can be "filled-in", using a parallel 
algorithm with the same complexity 0(logN) as the parallel algorithm in ?2. 
For the case N = 8 the parallel algorithm in ?2 computed the elements d1, 1 (A), 
d1 ,2(A)), d1, 4(A), and dl, 8(A) in the Sturm sequence. The remaining dl, j can 
be determined as follows: 

Step 1. 
Q1,6 = Q1,4Q5,6. 
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Step 2. 

Q1,3 = Q1,2Q2,3, 

Ql,5 = Ql,4Q5,5, 

Q1,7 = Q1,6Q7,7. 

From ?2, 1ON flops are required to evaluate the characteristic polynomial 
of A. Asymptotically, an equal number of flops are required to "fill-in" the 
Sturm sequence. Therefore, if ne is the maximum number of Sturm sequences 
required to compute a zero, then the total number of operations required to 
compute N zeros using parallel bisection on a single processor is less than 
2OneN2 flops. This compares with a bound of 5OneN2 flops for computing the 
eigenvalues using polysection. The operation counts are compared in Table 0. 

TABLE 0. Asymptotic operation counts for bisection and polysection 

processors bisection polysection 
1 2OneN2 5OneN2 

N 20neN 5OneN 

N2 4ne log2 N 4ne log 2 N 

If the two Sturm sequence "fill-in" steps given above are combined with the 
three steps in ?2, then the total number of parallel steps is five. At the expense 
of additional sequential computations, the number of parallel computations are 
reduced to three in the following parallel algorithm that computes all elements 
in the Sturm sequence in three parallel steps. In an early paper, Stone [17] 
observed this tradeoff between sequential and parallel computations. 

Step 1. Compute 

Q1,2 = Ql, IQ2,2, Q2,3 = Q2,2Q3,3, 

Q3,4 = Q3,3Q4,4, Q4,5 = Q4,4Q5,5, 

Q5,6 = Q5,5Q6,6, Q6,7 = Q6,6Q7,7, 

Q7,8 = Q7.7Q8,8- 

Step 2. Compute 

Q1,3 = Ql,IQ2,3, Q1,4 = Q1,2Q3,4, 

Q2,5 = Q2,3Q4,5, Q3,6 = Q3,4Q5,6, 

Q4,7= Q4,5Q6,7, Q5,8 = Q5,6Q7,8- 

Step 3. Compute 

Ql,5 = Ql,1Q2,5, Q1,6 = Q1,2Q3,6, 

Q1,7 = Q1,3Q4,7, Q1,8 = Q1,4Q5,8- 

This algorithm requires about half the time on a parallel computer but twice 
the number of processors required by the previous algorithm. In general, 
O(N log N) operations are required on a single processor compared with O(N) 
for the previous algorithm. 
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For large N or IhAIl, the characteristic polynomial may over/underflow the 
arithmetic unit. This can be avoided by scaling the intermediate 2 x 2 matrices 
that occur during the parallel algorithm [ 19]. Scaling is not required at each level 
r, which reduces the time for scaling. For example, if scaling is performed for 
r = 5, 10, 15, ... about N/32 matrices are scaled. Scaling time would be 
negligible if it were performed in machine code. If "power-of-two" scaling is 
used, then accuracy is unchanged. More specifically, over/underflow can be 
avoided by an occasional scaling of the 2 x 2 matrices in the following manner: 
First compute 

(6.2) qmax = IJQi,jJJo; 
next compute 

(6.3) 1 = [log2 qmax]; 

then Qi, j is replaced by 

(6.4) Qi,j = 2'Qij- 

A rounded value of / was used for the computational results in ?7. 

7. COMPUTATIONAL RESULTS 

In this section we compare the accuracy of: (a) the QR algorithm as im- 
plemented in subroutine TQL1 in EISPACK [15]; (b) parallel bisection; (c) 
polynomial polysection; and (d) rational function polysection. As mentioned in 
?6, the accuracy of serial bisection has been demonstrated to be high. Although 
the accuracy of both parallel bisection and polysection is yet to be determined, 
the computational results in this section imply that they are both quite accurate. 
The entries in the tables below are computed from 

(7.1) e max - i 
max~i J1% 

where Ai is computed in single precision and A* is computed using a double- 
precision version of subroutine TQL1. All the computations were done on the 
Sun SPARCstation 2. 

Three tables are presented that correspond to three different matrices. Table 
1 contains a comparison of accuracy for a matrix with random coefficients. 
Table 2 compares accuracies for the matrix W2k which is a slight variant of 
W2k_l in [21, p. 308]. The variant is used because the parallel algorithms 
were implemented for matrices with order equal to a power of 2. Although 
this restriction can be removed, it nevertheless simplifies implementation. JJ+ 
is of interest because it tests the ability of a method to handle near multiple 
eigenvalues. Table 3 (see p. 666) corresponds to the matrix with zeros on the 
diagonal and ones adjacent to the diagonal. The following observations can be 
made from the tables: 

1. In general, the accuracy of the QR algorithm is inferior to the accuracy 
of all the other methods with the exception of the rational function 
implementation for N < 1024 in Table 3. 

2. The accuracy of QR is noticeably inferior in the presence of multiple 
zeros, as demonstrated in Table 2. 



EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX 665 

TABLE 1. Accuracy of the QR method and parallel algorithms 
for a symmetric tridiagonal matrix with random coefficients 

N QR PB PI RI 
128 4.72 x 10-6 6.63 x 10-8 5.30 x 10-8 1.79 x 10-6 
256 5.09 x 10-6 7.43 x 10-7 5.84 x 10-7 5.25 x 10-6 
512 9.96 x 10-6 2.93 x 10-7 1.17 x 10-7 2.99 x 10-6 

1024 1.64 x 10-5 3.88 x 10-7 6.65 x 10-7 6.04 x 10-6 
2048 1.81 x 10-5 2.67 x 10-6 3.02 x 10-6 7.82 x 10-6 
4096 2.12 x 10-5 1.15 x 10-5 3.60 x 10-5 2.55 x 10-5 
QR as implemented in subroutine TQL1 from EISPACK 
PB parallel bisection 
PI polynomial implementation of polysection 
RI rational function implementation of polysection 

TABLE 2. Accuracy of the QR method and parallel algorithms 
for a symmetric tridiagonal matrix W2k with near multiple 
eigenvalues 

N QR PB PI RI 
128 3.77 x 10-6 1.18 x 10-7 1.18 x 10-7 1.18 x 10-7 
256 8.06 x 10-6 1.19 x 10-7 1.19 X 10-7 1.19 X 10-7 
512 2.30 x 10-5 1.19 x 10-7 1.19 X 10-7 1.19 X 10-7 

1024 4.46 x 10-5 5.95 x 10-8 5.95 x 10-8 2.38 x 10-7 

2048 8.14 x 10-5 1.19 x 10-7 1.19 X 10-7 1.19 X 10-7 
4096 1.30 x 10-4 5.95 x 10-8 5.95 x 10-8 1.19 X 10-7 

QR as implemented in subroutine TQLI from EISPACK 
PB parallel bisection 
PI polynomial implementation of polysection 
RI rational function implementation of polysection 

3. In general, the accuracy of the polynomial implementation of polysec- 
tion is superior to the rational function implementation. Nevertheless, 
the difference is relatively small and the errors are comparable in the 
presence of extensive deflation, as shown in Table 2. 

4. The accuracy of polynomial polysection and bisection are comparable 
and in general superior to the other methods. 

The accuracy of the rational function implementation in Table 3 is somewhat 
less than in Tables 1 and 2, probably because deflation does not occur in Table 
3. Deflation occurred for all the parallel computations in Tables 1 and 2 and 
appears to be the rule rather than the exception. For N = 4096 the eigenvalues 
of the matrix W2Jk are given as the zeros of a polynomial of degree 4096; 
however, because of deflation, the maximum degree of any computed rational 
polynomial is 15! Similarly, the maximum degree of any computed rational 
polynomial for Table 1 is 42. The eigenvalues of the matrix in Table 3 are 
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TABLE 3. Accuracy of the QR method and parallel algorithms 
for a symmetric tridiagonal matrix with zero diagonal and l's 
off diagonal 

N QR PB PI RI 
128 1.49 x 10-6 1.79 x 10-7 1.79 x 10-7 8.65 x 10-6 
256 1.91 x 10-6 3.58 x 10-7 1.79 x 10-7 2.95 x 10-5 
512 4.41 x 10-6 4.17 x 10-7 7.75 x 10-7 2.93 x 10-5 

1024 9.06 x 10-6 1.98 x 10-6 6.56 x 10-7 4.23 x 10-5 
2048 8.26 x 10-5 2.92 x 10-6 1.97 x 10-6 7.26 x 10-5 
4096 2.59 x 10-4 2.98 x 10-6 3.21 x 10-6 8.93 x 10-5 
QR as implemented in subroutine TQL1 from EISPACK 
PB parallel bisection 
PI polynomial implementation of polysection 
RI rational function implementation of polysection 

i= 2 cos iir/(N+ 1) , which are separated to the extent that deflation is minimal. 
Since the submatrices are identical, some deflation does occur but the maximum 
degree is 4096 compared to 15 for the matrix W2Jk presented in Table 2. This 
difference in computation may explain the difference between the fourth column 
of Table 3 and the fourth column in Table 2. 

The extent of the deflation is quite significant, even for random matrices, and 
leads one to question its origin. We conjecture that, for most matrices, the eigen- 
values may be somewhat loosely coupled to most coefficients; i.e., they may be 
determined to considerable accuracy as the eigenvalues of some submatrix and 
not influenced to any significant extent by coefficients outside the submatrix. 
Since the eigenvalues in polysection are determined from submatrices whose 
order increases, it is possible for the eigenvalues to converge rapidly and es- 
sentially remain unchanged thereafter, which results in deflation. The limiting 
case is the diagonal matrix in which the eigenvalues are determined by a 1-by-I 
matrix and remain independent of any other coefficients. This may be the main 
reason for deflation, although multiple eigenvalues also seem to contribute to 
deflation. These observations remain to be confirmed with theory. 

The results in Table 2 show that near multiple zeros do not present any 
difficulties for the parallel methods. Indeed, the amount of computation may 
be reduced. Recall that polysection produces exactly N intervals that contain 
one and only one zero and therefore, in the presence of near multiple zeros, the 
interval length can be near or identically zero. Therefore, a zero can be obtained 
directly and with the proper multiplicity without using any zerofinding methods. 
For intervals with near zero length the usual concern about slow convergence of 
Newton-like methods for multiple zeros is not warranted because first, the zeros 
are distinct to machine precision and second, since the intervals coalesce, any 
point on the interval is close to the multiple zero and therefore a good initial 
approximation to the zero. 

8. SUMMARY AND CONCLUSIONS 

The polysection algorithm was presented for computing the eigenvalues of a 
symmetric tridiagonal matrix in O(log N) time using N2 processors, or O(N) 
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time using N processors. Attributes of the method that contribute to reliability 
and performance are (i) a separation theorem that ensures that different pro- 
cessors find different eigenvalues, (ii) implementations that eliminate the usual 
problems associated with finite-precision arithmetic, (iii) reliable treatment of 
multiple and near multiple zeros, and (iv) high accuracy. Two implementa- 
tions of the algorithm were presented. The polynomial implementation is more 
accurate than QR, and the rational function implementation has comparable 
accuracy with deflation. The rational function implementation is self-scaling 
and takes full advantage of deflation, both from the standpoint of having to 
compute fewer zeros of rational functions with lower degree. 

The performance of polysection on a parallel computer is a complex issue 
that depends on many factors including: 

(a) Many methods could be used to determine the zeros within each in- 
terval, including Newton's method, bisection, and the secant method together 
with variants and combinations. Zerofinding is itself a significant area of com- 
putational mathematics. Dongarra and Sorensen [6] use a variant of Newton's 
method in which a local quadratic rational approximation to the function is 
computed. The zero-in method [ 12] combines bisection and the secant method. 
Whatever method is chosen, it should probably be combined with bisection to 
ensure that all zeros are found. 

(b) Deflation plays a significant role in reducing computing time on either a 
single or multiprocessor. The effects are two-fold: first, the number of computed 
zeros is reduced and second, the order of the rational functions is decreased. 
With deflation, the computing time on a single processor for the results in Table 
2, using the rational function implementation, was proportional to N rather 
than N2 . However, deflation does not occur for the matrix that corresponds to 
Table 3, which supports the observation that a matrix with random coefficients 
does not provide a stringent test because it probably does not correspond to 
either the worst or the best case. 

(c) The algorithm requires global communication and will therefore per- 
form better on parallel computers that provide efficient global parallel pathways 
such as those provided by the hypercube and related interconnection topologies. 

(d) The algorithm requires the implementation of the shuffle and merge 
communication tasks. To maintain an overall complexity of O(log2 N), these 
tasks must be implemented with parallel communication algorithms on suitable 
multiprocessor architectures. Although communication does not change the 
overall complexity, it is likely to make a significant contribution to the overall 
computing time. 

Polysection was compared to parallel bisection, which was found to have 
comparable accuracy and lower asymptotic operation count. However, as men- 
tioned in the introduction, the reliability and the ability to speed zerofinding 
through the use of high-order methods and deflation may make polysection the 
algorithm of choice for certain application. 

ACKNOWLEDGMENTS 

The author wishes to acknowledge a helpful conversation with Bill Gragg who 
suggested the use of the partial fraction expansion in ?3, Lemma 1. The author 
also wishes to thank Rob Schreiber for directing attention to parallel bisection, 



668 P. N. SWARZTRAUBER 

following a lecture on polysection at RIACS in August 1989. Thanks are also 
due the reviewers who provided many excellent contributions and particularly 
to Jim Demmel whose extensive comments on parallel bisection resulted in ?6. 

BIBLIOGRAPHY 

1. W. Barth, R. S. Martin, and J. H. Wilkinson, Calculation of the eigenvalues of a symmetric 
tridiagonal matrix by the method of bisection, Numer. Math. 9 (1967), 386-393. 

2. J. R. Bunch, C. P. Nielsen, and D. C. Sorensen, Rank-one modification of the symmetric 
eigenproblem, Numer. Math. 31 (1978), 31-48. 

3. J. J. M. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenproblem, 
Numer. Math. 36 (1981), 177-195. 

4. J. Demmel and W. Kahan, Accurate singular values of bidiagonal matrices, SIAM J. Sci. 
Statist. Comput. 11 (1990), 873-912. 

5. J. Demmel and W. Gragg, On computing accurate singular values and eigenvalues of acyclic 
matrices, IMA Preprint Series, no. 962, Institute for Math. and its Appl., Univ. of Min- 
nesota, 1992. 

6. J. J. Dongarra and D. C. Sorensen, A fully parallel algorithm for the symmetric eigenvalue 
problem, SIAM J. Sci. Statist. Comput. 8 (1987), s139-s154. 

7. D. J. Evans, J. Shanehchi, and C. C. Rick, A modified bisection algorithm for the deter- 
mination of the eigenvalues of a symmetric tridiagonal matrix, Numer. Math. 38 (1982), 
417-419. 

8. I. C. F. Ipsen and E. R. Jessup, Solving the symmetric tridiagonal eigenvalue problem on 
the hypercube, SIAM J. Sci. Statist. Comput. 11 (1990), 203-229. 

9. W. Kahan, Accurate eigenvalues of a symmetric tri-diagonal matrix, Tech. Report CS41, 
Comput. Sci. Dept., Stanford University, July 22, 1966, with revisions to June 1968, avail- 
able from the author at the University of California at Berkeley. 

10. A. S. Krishnakumar and M. Morf, Eigenvalues of a symmetric tridiagonal matrix: a divide 
and conquer approach, Numer. Math. 48 (1986), 349-368. 

11. R. E. Ladner and M. J. Fisher, Parallel prefix computation, J. Assoc. Comput. Mach. 27 
(1980), pp. 831-838. 

12. S.-S. Lo, B. Philippe, and A. H. Sameh, A multiprocessor algorithm for the symmetric tridi- 
agonal eigenvalue problem, SIAM J. Sci. Statist. Comput. 8 (1987), s1 55-s 165. 

13. A. H. Sameh and D. J. Kuch, A parallel QR algorithm for symmetric tridiagonal matrices, 
IEEE Trans. Comput. 26 (1977), 147-153. 

14. R. Schreiber, Computing generalized inverses and eigenvalues of symmetric matrices using 
systolic arrays, Computing Methods in Applied Sciences and Engineering VI (R. Glowinski 
and J.-L. Lions, eds.), North-Holland, Amsterdam, 1984, pp. 285-295. 

15. B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. 
Moler, Matrix eigensystem routines-EISPACK Guide, 2nd ed., Lecture Notes in Comput. 
Sci., vol. 6, Springer-Verlag, New York, 1976. 

16. D. C. Sorensen and P. T. P. Tang, On the orthogonality of eigenvectors computed by divide- 
and-conquer techniques, SIAM J. Numer. Anal. 28 (1991), 1172-1775. 

17. H. S. Stone, Parallel tridiagonal solvers, ACM Trans. Math. Software 1 (1975), 289-307. 

18. P. N. Swarztrauber, A direct method for the discrete solution of separable elliptic equations, 
SIAM J. Numer. Anal. 11 (1974), 1136-1150. 

19. , A parallel algorithm for solving general tridiagonal equations, Math. Comp. 33 (1979), 
185-199. 

20. J. H. Wilkinson, Calculation of the eigenvalues of a symmetric tridiagonal matrix by the 
method of bisection, Numer. Math. 4 (1962), 362-367. 

21. , The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. 

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH, P. O. Box 3000, BOULDER, COLORADO 80303 
E-mail address: pauls@ncar.ucar.edu 


